Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.520
Filtrar
1.
Br J Psychiatry ; 224(5): 170-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602159

RESUMO

BACKGROUND: Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. AIMS: Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. METHOD: A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. RESULTS: Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. CONCLUSIONS: Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.


Assuntos
Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Conectoma , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Estudos de Casos e Controles , Neuroimagem , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Rede de Modo Padrão/fisiopatologia
2.
Transl Psychiatry ; 14(1): 164, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531856

RESUMO

Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Depressivo Maior/patologia , Esquizofrenia/patologia , Estudos Transversais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Ferro
3.
Psychiatry Res Neuroimaging ; 340: 111803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460393

RESUMO

Adverse childhood experiences (ACEs) negatively affect the function and structure of emotion brain circuits, increasing the risk of various psychiatric disorders. It is unclear if ACEs show disorder specificity with respect to their effects on brain structure. We aimed to investigate whether the structural brain effects of ACEs differ between patients with major depression (MDD) and borderline personality disorder (BPD). These disorders share many symptoms but likely have different etiologies. To achieve our goal, we obtained structural 3T-MRI images from 20 healthy controls (HC), 19 MDD patients, and 18 BPD patients, and measured cortical thickness and subcortical gray matter volumes. We utilized the Adverse Childhood Experiences (ACE) questionnaire to quantify self-reported exposure to childhood trauma. Our findings suggest that individuals with MDD exhibit a smaller cortical thickness when compared to those with BPD. However, ACEs showed a significantly affected relationship with cortical thickness in BPD but not in MDD. ACEs were found to be associated with thinning in cortical regions involved in emotional behavior in BPD, whereas HC showed an opposite association. Our results suggest a potential mechanism of ACE effects on psychopathology involving changes in brain structure. These findings highlight the importance of early detection and intervention strategies.


Assuntos
Experiências Adversas da Infância , Transtorno da Personalidade Borderline , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/patologia , Depressão , Encéfalo , Personalidade
4.
Neuroimage Clin ; 41: 103581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38430800

RESUMO

Arterial spin labeling (ASL) can be used to detect differences in perfusion for multiple brain regions thought to be important in major depressive disorder (MDD). However, the potential of cerebral blood flow (CBF) to predict MDD and its correlations between the blood lipid levels and immune markers, which are closely related to MDD and brain function change, remain unclear. The 451 individuals - 298 with MDD and 133 healthy controls who underwent MRI at a single time point with arterial spin labelling and a high resolution T1-weighted structural scan. A proportion of MDD also provided blood samples for analysis of lipid and immune markers. We performed CBF case-control comparisons, random forest model construction, and exploratory correlation analyses. Moreover, we investigated the relationship between gray matter volume (GMV), blood lipids, and the immune system within the same sample to assess the differences in CBF and GMV. We found that the left inferior parietal but supramarginal and angular gyrus were significantly different between the MDD patients and HCs (voxel-wise P < 0.001, cluster-wise FWE correction). And bilateral inferior temporal (ITG), right middle temporal gyrus and left precentral gyrus CBF predict MDD (the area under the receiver operating characteristic curve of the random forest model is 0.717) and that CBF is a more sensitive predictor of MDD than GMV. The left ITG showed a positive correlation trend with immunoglobulin G (r = 0.260) and CD4 counts (r = 0.283). The right ITG showed a correlation trend with Total Cholesterol (r = -0.249) and tumour necrosis factor-alpha (r = -0.295). Immunity and lipids were closely related to CBF change, with the immunity relationship potentially playing a greater role. The interactions between CBF, plasma lipids and immune index could therefore represent an MDD pathophysiological mechanism. The current findings provide evidence for targeted regulation of CBF or immune properties in MDD.


Assuntos
Transtorno Depressivo Maior , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Depressão , Encéfalo/patologia , Imageamento por Ressonância Magnética , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Biomarcadores , Lipídeos
5.
Pharmacol Rev ; 76(2): 199-227, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351075

RESUMO

Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Vesículas Extracelulares , Humanos , Transtorno Depressivo Maior/patologia , Vesículas Extracelulares/patologia , Biópsia Líquida , Biomarcadores
6.
Sci Rep ; 14(1): 4538, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402253

RESUMO

The hippocampus and amygdala have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Preclinical models suggest that stress-related changes in these regions can be reversed by antidepressants, including ketamine. Clinical studies have identified reduced volumes in MDD that are thought to be potentiated by early life stress and worsened by repeated depressive episodes. This study used 3T and 7T structural magnetic resonance imaging data to examine longitudinal changes in hippocampal and amygdalar subfield volumes associated with ketamine treatment. Data were drawn from a previous double-blind, placebo-controlled, crossover trial of healthy volunteers (HVs) unmedicated individuals with treatment-resistant depression (TRD) (3T: 18 HV, 26 TRD, 7T: 17 HV, 30 TRD) who were scanned at baseline and twice following either a 40 min IV ketamine (0.5 mg/kg) or saline infusion (acute: 1-2 days, interim: 9-10 days post infusion). No baseline differences were noted between the two groups. At 10 days post-infusion, a slight increase was observed between ketamine and placebo scans in whole left amygdalar volume in individuals with TRD. No other differences were found between individuals with TRD and HVs at either field strength. These findings shed light on the timing of ketamine's effects on cortical structures.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Ketamina , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/patologia , Voluntários Saudáveis , Hipocampo/patologia , Ketamina/farmacologia , Ketamina/uso terapêutico , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
J Affect Disord ; 351: 631-640, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290583

RESUMO

We examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years). Four clinical profiles were used in the classification of a clinical staging model: healthy comparison individuals with no history of depression (HC, n = 240), individuals at high risk for serious mental illness due to the presence of subclinical symptoms (SC, n = 80), first-episode depression (FD, n = 82), and participants with recurrent MDD in a current major depressive episode (RD, n = 220). Whole-brain volumetric measurements were extracted with FreeSurfer 7.1 and examined using three different types of analyses. Hippocampal volume decrease and cortico-limbic thinning were the most informative features for the RD vs HC comparisons. FD vs HC revealed that FD participants were characterized by a focal decrease in cortical thickness and global enlargement in amygdala volumes. Greater total amygdala volumes were significantly associated with earlier onset of illness in the FD but not the RD group. We did not confirm the construct validity of a tested clinical staging model, as a differential pattern of brain alterations was identified across the three diagnostic groups that did not parallel a stepwise clinical staging approach. The pathological processes during early stages of the illness may fundamentally differ from those that occur at later stages with clinical progression.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Depressão , Imageamento por Ressonância Magnética/métodos , Canadá , Neuroimagem
8.
J Affect Disord ; 350: 428-434, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244786

RESUMO

OBJECTIVE: Because of similar clinical manifestations, bipolar disorder (BD) patients are often misdiagnosed as major depressive disorder (MDD). This study aimed to compare the difference between depressed patients later converting to BD and unipolar depression (UD) according to diffusion tensor imaging (DTI). METHOD: Patients with MDD (562 participants) in depressive episode states and healthy controls (HCs) (145 participants) were recruited over 10 years. Demographic and magnetic resonance imaging (MRI) data were collected at the time of recruitment. All patients with MDD were followed up for 5 years and classified into the transfer to BD (tBD) group (83 participants) and UD group (160 participants) according to the follow-up results. DTI and functional magnetic resonance imaging at baseline were compared. RESULTS: Common abnormalities were found in both tBD and UD groups, including left superior cerebellar peduncle (SCP.L), right anterior limb of the internal capsule (ALIC.R), right superior fronto-occipital fasciculus (SFOF.R), and right inferior fronto-occipital fasciculus (IFOF.R). The tBD showed more extensive abnormalities than the UD in the body of corpus callosum, fornix, left superior corona radiata, left posterior corona radiata, left superior longitudinal fasciculus, and left superior fronto-occipital fasciculus. CONCLUSION: The study demonstrated the common and distinct abnormalities of tBD and UD when compared to HC. The tBD group showed more extensive disruptions of white matter integrity, which could be a potential biomarker for the early identification of BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Transtorno Bipolar/diagnóstico , Substância Branca/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo
9.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198165

RESUMO

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Estudos de Coortes , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Biomarcadores
10.
J Affect Disord ; 347: 175-182, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000466

RESUMO

BACKGROUND: Cortical thickness reductions in major depressive disorder are distributed across multiple regions. Research has indicated that cortical atrophy is influenced by connectome architecture on a range of neurological and psychiatric diseases. However, whether connectome architecture contributes to changes in cortical thickness in the same manner as it does in depression is unclear. This study aims to explain the distribution of cortical thickness reductions across the cortex in depression by brain connectome architecture. METHODS: Here, we calculated a differential map of cortical thickness between 110 depression patients and 88 age-, gender-, and education level-matched healthy controls by using T1-weighted images and a structural network reconstructed through the diffusion tensor imaging of control group. We then used a neighborhood deformation model to explore how cortical thickness change in an area is influenced by areas structurally connected to it. RESULTS: We found that cortical thickness in the frontoparietal and default networks decreased in depression, regional cortical thickness changes were related to reductions in their neighbors and were mainly limited by the frontoparietal and default networks, and the epicenter was in the prefrontal lobe. CONCLUSION: Current findings suggest that connectome architecture contributes to the irregular topographic distribution of cortical thickness reductions in depression and cortical atrophy is restricted by and dependent on structural foundation.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Encéfalo/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Atrofia/patologia , Imageamento por Ressonância Magnética
11.
Artigo em Inglês | MEDLINE | ID: mdl-37863171

RESUMO

Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Animais , Humanos , Espinhas Dendríticas/patologia , Transtorno do Espectro Autista/patologia , Transtorno Depressivo Maior/patologia , Encéfalo/patologia , Transmissão Sináptica , Plasticidade Neuronal/fisiologia , Sinapses/patologia
12.
Biol Psychiatry ; 95(5): 414-425, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573006

RESUMO

BACKGROUND: Major depressive disorder (MDD) is complicated by population heterogeneity, motivating the investigation of biotypes through imaging-derived phenotypes. However, neuromorphic heterogeneity in MDD remains unclear, and how the correlated gene expression (CGE) connectome constrains these neuromorphic anomalies in MDD biotypes has not yet been studied. METHODS: Here, we related cortical thickness deviations in MDD biotypes to a pattern of CGE connectome. Cortical thickness was estimated from 3-dimensional T1-weighted magnetic resonance images in 2 independent cohorts (discovery cohort: N = 425; replication cohort: N = 217). The transcriptional activity was measured according to Allen Human Brain Atlas. A density peak-based clustering algorithm was used to identify MDD biotypes. RESULTS: We found that patients with MDD were clustered into 2 replicated biotypes based on single-patient regional deviations from healthy control participants across 2 datasets. Biotype 1 mainly exhibited cortical thinning across the brain, whereas biotype 2 mainly showed cortical thickening in the brain. Using brainwide gene expression data, we found that deviations of transcriptionally connected neighbors predicted regional deviation for both biotypes. Furthermore, putative CGE-informed epicenters of biotype 1 were concentrated on the cognitive control circuit, whereas biotype 2 epicenters were located in the social perception circuit. The patterns of epicenter likelihood were separately associated with depression- and anxiety-response maps, suggesting that epicenters of MDD biotypes may be associated with clinical efficacies. CONCLUSIONS: Our findings linked the CGE connectome and neuromorphic deviations to identify distinct epicenters in MDD biotypes, providing insight into how microscale gene expressions informed MDD biotypes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/patologia , Depressão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Perfilação da Expressão Gênica
13.
Psychol Med ; 54(3): 495-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37485692

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. METHODS: Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. RESULTS: Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82-0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70-0.73 AUC). CONCLUSIONS: These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Humanos , Eletroconvulsoterapia/métodos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/patologia , Depressão , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Aprendizado de Máquina , Resultado do Tratamento
14.
Neuroimage Clin ; 41: 103553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38134743

RESUMO

BACKGROUND: Social anhedonia is common within major depressive disorder (MDD) and associated with worse treatment outcomes. The orbitofrontal cortex (OFC) is implicated in both reward (medial OFC) and punishment (lateral OFC) in social decision making. Therefore, to understand the biology of social anhedonia in MDD, medial/lateral OFC metabolism, volume, and thickness, as well as structural connectivity to the striatum, amygdala, and ventral tegmental area/nucleus accumbens were examined. A positive relationship between social anhedonia and these neurobiological outcomes in the lateral OFC was hypothesized, whereas an inverse relationship was hypothesized for the medial OFC. The association between treatment-induced changes in OFC neurobiology and depression improvement were also examined. METHODS: 85 medication-free participants diagnosed with MDD were assessed with Wisconsin Schizotypy Scales to assess social anhedonia and received pretreatment simultaneous fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI), including structural and diffusion. Participants were then treated in an 8-week randomized placebo-controlled double-blind course of escitalopram. PET/MRI were repeated following treatment. Metabolic rate of glucose uptake was quantified from dynamic FDG-PET frames using Patlak graphical analysis. Structure (volume and cortical thickness) was quantified from structural MRI using Freesurfer. To assess structural connectivity, probabilistic tractography was performed on diffusion MRI and average FA was calculated within the derived tracts. Linear mixed models with Bonferroni correction were used to examine the relationships between variables. RESULTS: A significantly negative linear relationship between pretreatment social anhedonia score and structural connectivity between the medial OFC and the amygdala (estimated coefficient: -0.006, 95 % CI: -0.0108 - -0.0012, p-value = 0.0154) was observed. However, this finding would not survive multiple comparisons correction. No strong evidence existed to show a significant linear relationship between pretreatment social anhedonia score and metabolism, volume, thickness, or structural connectivity to any of the regions examined. There was also no strong evidence to suggest significant linear relationships between improvement in depression and percent change in these variables. CONCLUSIONS: Based on these multimodal findings, the OFC likely does not underlie social anhedonia in isolation and therefore should not be the sole target of treatment for social anhedonia. This is consistent with previous reports that other areas of the brain such as the amygdala and the striatum are highly involved in this behavior. Relatedly, amygdala-medial OFC structural connectivity could be a future target. The results of this study are crucial as, to our knowledge, they are the first to relate structure/function of the OFC with social anhedonia severity in MDD. Future work may need to involve a whole brain approach in order to develop therapeutics for social anhedonia.


Assuntos
Anedonia , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/patologia , Depressão , Fluordesoxiglucose F18 , Encéfalo , Imageamento por Ressonância Magnética/métodos
15.
Neuroimage ; 285: 120497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142755

RESUMO

Major depressive disorder (MDD) is a serious and heterogeneous psychiatric disorder that needs accurate diagnosis. Resting-state functional MRI (rsfMRI), which captures multiple perspectives on brain structure, function, and connectivity, is increasingly applied in the diagnosis and pathological research of MDD. Different machine learning algorithms are then developed to exploit the rich information in rsfMRI and discriminate MDD patients from normal controls. Despite recent advances reported, the MDD discrimination accuracy has room for further improvement. The generalizability and interpretability of the discrimination method are not sufficiently addressed either. Here, we propose a machine learning method (MFMC) for MDD discrimination by concatenating multiple features and stacking multiple classifiers. MFMC is tested on the REST-meta-MDD data set that contains 2428 subjects collected from 25 different sites. MFMC yields 96.9% MDD discrimination accuracy, demonstrating a significant improvement over existing methods. In addition, the generalizability of MFMC is validated by the good performance when the training and testing subjects are from independent sites. The use of XGBoost as the meta classifier allows us to probe the decision process of MFMC. We identify 13 feature values related to 9 brain regions including the posterior cingulate gyrus, superior frontal gyrus orbital part, and angular gyrus, which contribute most to the classification and also demonstrate significant differences at the group level. The use of these 13 feature values alone can reach 87% of MFMC's full performance when taking all feature values. These features may serve as clinically useful diagnostic and prognostic biomarkers for MDD in the future.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Aprendizado de Máquina
16.
J Affect Disord ; 348: 97-106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113944

RESUMO

Individuals at familial risk for mood disorders exhibit deficits in emotional processing and associated brain dysfunction prior to illness onset. However, such brain-behavior abnormalities related to familial predisposition remain poorly understood. To investigate robust abnormal functional activation patterns during emotional processing in unaffected at-risk relatives of patients with major depressive disorder (UAR-MDD) and bipolar disorder (UAR-BD), we performed a meta-analysis of task-based functional magnetic resonance imaging studies using Seed-based d Mapping (SDM) toolbox. Common and distinct patterns of abnormal functional activation between UAR-MDD and UAR-BD were detected via conjunction and differential analyses. A total of 17 studies comparing 481 UAR and 670 healthy controls (HC) were included. Compared with HC, UAR-MDD exhibited hyperactivation in the parahippocampal gyrus, amygdala and cerebellum, while UAR-BD exhibited parahippocampal hyperactivation and hypoactivation in the striatum and middle occipital gyrus (MOG). Conjunction analysis revealed shared hyperactivated PHG in both groups. Differential analysis indicated that the activation patterns of amygdala and MOG significantly differed between UAR-MDD and UAR-BD. These findings provide novel insights into common and distinct neural phenotypes for familial risk and associated risk mechanisms in MDD and BD, which may have implications in guiding precise prevention strategies tailored to the family context.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Encéfalo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Emoções/fisiologia , Predisposição Genética para Doença , Imageamento por Ressonância Magnética
17.
Psychiatry Res Neuroimaging ; 336: 111747, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948916

RESUMO

Anhedonia is a core feature of major depressive disorder (MDD) and the limbic system has been indicated to be associated with anhedonia in MDD due to its crucial role within the reward circuit. However, the relationship between different regions of the limbic system and MDD, particularly anhedonic symptoms, remains unclear. Therefore, the purpose of this study was to investigate volume changes of various parts of the subcortical limbic (ScLimbic) system in MDD with and without anhedonia. A total of 120 individuals, including 30 MDD patients with anhedonia, 43 MDD patients without anhedonia, and 47 healthy controls (HCs) were enrolled in this study. All subjects underwent structural magnetic resonance imaging scans. After that, ScLimbic system segmentation was performed using the FreeSurfer pipeline ScLimbic. Analysis of covariance (ANCOVA) was performed to identify brain regions with significant volume differences among three groups, and then, post hoc tests were calculated for inter-group comparisons. Finally, correlations between volumes of different parts of the ScLimbic and clinical characteristics in MDD patients were further analyzed. The ANCOVA revealed significant volume differences of the ScLimbic system among three groups in the bilateral fornix (Fx), and the right basal forebrain (BF). As compared with HCs, both groups of MDD patients showed decreased volume in the right Fx, meanwhile, MDD patients with anhedonia further exhibited volume reductions in the left Fx and right BF. However, no significant difference was found between MDD patients with and without anhedonia. No significant association was observed between subregion volumes of the ScLimbic system and clinical features in MDD. The present findings demonstrated that MDD patients with and without anhedonia exhibited segregated brain structural alterations in the ScLimbic system and volume loss of the ScLimbic system might be fairly extensive in MDD patients with anhedonia.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Anedonia , Encéfalo/patologia , Imageamento por Ressonância Magnética
18.
Psychiatry Res ; 329: 115557, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890406

RESUMO

Although previous studies have demonstrated regional gray matter (GM) structural abnormalities in adolescents with major depressive disorder (MDD), how the topological organization of GM networks is affected in these patients is still unclear. Structural magnetic resonance imaging data were acquired from 100 first-episode drug-naïve adolescent MDD patients and 80 healthy controls (HCs). Whole-brain GM structural network was constructed for each subject, and a graph theory analysis was used to calculate the topological metrics of GM networks. Adolescent MDD patients showed significantly lower cluster coefficient and local efficiency compared to HCs. Compared to controls, adolescent MDD patients showed higher nodal centralities in the bilateral cuneus, left lingual gyrus, and right middle occipital gyrus and lower nodal centralities in the bilateral dorsolateral superior frontal gyrus, bilateral middle frontal gyrus, right anterior cingulate and paracingulate gyri, bilateral hippocampus, bilateral amygdala, bilateral caudate nucleus, and bilateral thalamus. Nodal centralities of the hippocampus were negatively associated with symptom severity and illness duration. Our findings suggest disrupted topological organization of GM structural networks in adolescent MDD patients. Impaired local segregation and abnormal nodal centralities in the prefrontal-subcortical-limbic areas and visual cortex regions may play important roles in the neurobiology of adolescent-onset MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Adolescente , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Córtex Cerebral/patologia , Córtex Pré-Frontal/patologia , Tonsila do Cerebelo , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
19.
Brain Imaging Behav ; 17(6): 749-763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725323

RESUMO

BACKGROUND: Major depressive and social anxiety disorders have a high comorbidity rate and similar cognitive patterns. However, their unique and shared neuroanatomical characteristics have not been fully identified. METHODS: Voxel-based morphometric studies comparing gray matter volume between patients with major depressive disorder/social anxiety disorder and healthy controls were searched using 4 electronic databases from the inception to March 2022. Stereotactic data were extracted and subsequently tested for convergence and differences using activation likelihood estimation. In addition, based on the result of the meta-analysis, behavioral analysis was performed to assess the functional roles of the regions affected by major depressive disorder and/or social anxiety disorder. RESULTS: In total, 34 studies on major depressive disorder with 2873 participants, and 10 studies on social anxiety disorder with 1004 subjects were included. Gray matter volume conjunction analysis showed that the right parahippocampal gyrus region, especially the amygdala, was smaller in patients compared to healthy controls. The contrast analysis of major depressive disorder and social anxiety disorder revealed lower gray matter volume in the right lentiform nucleus and medial frontal gyrus in social anxiety disorder and lower gray matter volume in the left parahippocampal gyrus in major depressive disorder. Behavioral analysis showed that regions with lower gray matter volume in social anxiety disorder are strongly associated with negative emotional processes. CONCLUSIONS: The shared and unique patterns of gray matter volume abnormalities in patients with major depressive and social anxiety disorder may be linked to the underlying neuropathogenesis of these mental illnesses and provide potential biomarkers. PROSPERO registration number: CRD42021277546.


Assuntos
Transtorno Depressivo Maior , Fobia Social , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Fobia Social/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Cerebral/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
20.
BMC Psychiatry ; 23(1): 540, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491229

RESUMO

BACKGROUND: Previous neuroimaging findings have demonstrated the association between anhedonia and the hippocampus. However, few studies have focused on the structural changes in the hippocampus in major depressive disorder (MDD) patients with anhedonia. Meanwhile, considering that multiple and functionally specialized subfields of the hippocampus have their own signatures, the present study aimed to investigate the volumetric alterations of the hippocampus as well as its subfields in MDD patients with and without anhedonia. METHODS: A total of 113 subjects, including 30 MDD patients with anhedonia, 40 MDD patients without anhedonia, and 43 healthy controls (HCs), were recruited in the study. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and the automated hippocampal substructure module in FreeSurfer 6.0 was used to evaluate the volumes of hippocampal subfields. We compared the volumetric differences in hippocampal subfields among the three groups by analysis of variance (ANOVA, post hoc Bonferroni), and partial correlation was used to explore the association between hippocampal subregion volumes and clinical characteristics. RESULTS: ANOVA showed significant volumetric differences in the hippocampal subfields among the three groups in the left hippocampus head, mainly in the cornu ammonis (CA) 1, granule cell layer of the dentate gyrus (GC-ML-DG), and molecular layer (ML). Compared with HCs, both groups of MDD patients showed significantly smaller volumes in the whole left hippocampus head. Interestingly, further exploration revealed that only MDD patients with anhedonia had significantly reduced volumes in the left CA1, GC-ML-DG and ML when compared with HCs. No significant difference was found in the volumes of the hippocampal subfields between MDD patients without anhedonia and HCs, either the two groups of MDD patients. However, no association between hippocampal subfield volumes and clinical characteristics was found in either the subset of patients with anhedonia or in the patient group as a whole. CONCLUSIONS: These preliminary findings suggest that MDD patients with anhedonia exhibit unique atrophy of the hippocampus and that subfield abnormalities in the left CA1 and DG might be associated with anhedonia in MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Anedonia , Tamanho do Órgão , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal/patologia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...